

Settei

[image: Documentation Status]
 [https://settei.readthedocs.io/][image: https://badge.fury.io/py/settei.svg]
 [https://badge.fury.io/py/settei][image: https://travis-ci.org/spoqa/settei.svg]
 [https://travis-ci.org/spoqa/settei]Configuration utility for common Python applications and services.
FYI, “settei” (設定) means settings in Japanese. :)

Loading a configuration is easy

Suppose you use Flask [http://flask.pocoo.org/] with Settei.

from flask import Flask
from settei import Configuration, config_property

class WebConfiguration(Configuration):
 """Load Configuration::

 [web]
 debug = true

 """

 #: debug option
 debug = config_property('web.debug', bool, default=False)

conf = WebConfiguration.from_path(pathlib.Path('.') / 'dev.toml')
app = Flask(__name__)

if __name__ == '__main__':
 app.run(debug=conf.debug)

	settei — App object holding configuration
	settei.base — Basic app object

	settei.presets — Richer presets for several frameworks
	settei.presets.celery — Preset for Celery

	settei.presets.flask — Preset for Flask apps

	settei.presets.logging — Preset for logging configuration

	settei.version — Version data

	Changlog
	Verison 0.4.0

	Version 0.3.0

	Version 0.2.2

	Version 0.2.0

	Version 0.1.1

	Version 0.1.0

Indices and tables

	Index

	Module Index

	Search Page

settei — App object holding configuration

	copyright:	
	2016—2017 Spoqa, Inc.

	license:	Apache License 2.0, see LICENSE for more details.

	settei.base — Basic app object

	settei.presets — Richer presets for several frameworks
	settei.presets.celery — Preset for Celery

	settei.presets.flask — Preset for Flask apps

	settei.presets.logging — Preset for logging configuration

	settei.version — Version data

settei.base — Basic app object

New in version 0.2.0.

	
exception settei.base.ConfigError

	The base exception class for errors releated to Configuration
and config_property().

New in version 0.4.0.

	
exception settei.base.ConfigKeyError

	An exception class rises when there’s no a configuration key.
A subtype of ConfigError and KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].

New in version 0.4.0.

	
exception settei.base.ConfigTypeError

	An exception class rises when the configured value is not of a type
the field expects.

New in version 0.4.0.

	
class settei.base.Configuration(config: typing.Mapping[str, object] = {}, **kwargs)

	Application instance with its settings e.g. database. It implements
read-only Mapping [https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping] protocol as well, so you
can treat it as a dictionary of string keys.

Changed in version 0.4.0: Prior to 0.4.0, it had raised Python’s built-in KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] on
missing keys, but since 0.4.0 it became to raise ConfigKeyError,
a subtype of KeyError [https://docs.python.org/3/library/exceptions.html#KeyError], instead.

	
classmethod from_file(file) → settei.base.Configuration

	Load settings from the given file and instantiate an
Configuration instance from that.

	Parameters:	file – the file object that contains TOML settings

	Returns:	an instantiated configuration

	Return type:	Configuration

	
classmethod from_path()

	Load settings from the given path and instantiate an
Configuration instance from that.

	Parameters:	path (pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]) – the file path that contains TOML settings

	Returns:	an instantiated configuration

	Return type:	Configuration

	
exception settei.base.ConfigValueError

	An execption class rises when the configured value is somewhat
invalid.

New in version 0.4.0.

	
exception settei.base.ConfigWarning

	Warning category which raised when a default configuration is used
instead due to missing required configuration.

	
class settei.base.config_object_property(key: str, cls, docstring: str = None, **kwargs) → None

	Similar to config_property except it purposes to reprsent
more complex objects than simple values. It can be utilized as dependency
injector.

Suppose a field declared as:

from werkzeug.contrib.cache import BaseCache

class App(Configuration):
 cache = config_object_property('cache', BaseCache)

Also a configuration:

[cache]
class = "werkzeug.contrib.cache:RedisCache"
host = "a.nodes.redis-cluster.local"
port = 6379
db = 0

The above instantiates the following object:

from werkzeug.contrib.cache import RedisCache
RedisCache(host='a.nodes.redis-cluster.local', port=6380, db=0)

There’s a special field named * which is for positional arguments
as well:

[cache]
class = "werkzeug.contrib.cache:RedisCache"
"*" = [
 "a.nodes.redis-cluster.local",
 6379,
]
db = 0

The above configuration is equivalent to the following Python code:

from werkzeug.contrib.cache import RedisCache
RedisCache(‘a.nodes.redis-cluster.local’, 6380, db=0)

New in version 0.4.0.

	
class settei.base.config_property(key: str, cls, docstring: str = None, **kwargs) → None

	Declare configuration key with type hints, default value, and
docstring.

	Parameters:	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – the dotted string of key path. for example abc.def looks
up config['abc']['def']

	cls (type [https://docs.python.org/3/library/functions.html#type]) – the allowed type of the configuration

	docstring (str [https://docs.python.org/3/library/stdtypes.html#str]) – optional documentation about the configuration.
it will be set to __doc__ attribute

	default – keyword only argument.
optional default value used for missing case.
cannot be used with default_func at a time

	default_func (collections.abc.Callable [https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable]) – keyword only argument.
optional callable which returns a default value
for missing case.
it has to take an App mapping, and return
a default value.
cannot be used with default at a time

	default_warning (bool [https://docs.python.org/3/library/functions.html#bool]) – keyword only argument.
whether to warn when default value is used.
does not warn by default.
this option is only available when default
value is provided

Changed in version 0.4.0: Prior to 0.4.0, it had raised Python’s built-in KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] on
missing keys, but since 0.4.0 it became to raise ConfigKeyError,
a subtype of KeyError [https://docs.python.org/3/library/exceptions.html#KeyError], instead.

In the same manner, while prior to 0.4.0, it had raised Python’s
built-in TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] when a configured value is not of a type
it expects, but since 0.4.0 it became to raise ConfigTypeError
instead. ConfigTypeError is also a subtype of TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

	
docstring

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The propertly indented __doc__ string.

	
settei.base.get_union_types(type_) → bool

	Return a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of the given Union
type_‘s parameters.

>>> get_union_types(typing.Union[int, str, bool])
(int, str, bool)

If it’s not an Union type or even not a type
it returns None.

New in version 0.3.0.

settei.presets — Richer presets for several frameworks

New in version 0.2.0.

	settei.presets.celery — Preset for Celery

	settei.presets.flask — Preset for Flask apps

	settei.presets.logging — Preset for logging configuration

settei.presets.celery — Preset for Celery

	
class settei.presets.celery.WorkerConfiguration(config: typing.Mapping[str, object] = {}, **kwargs)

	The application object mixin which holds configuration for Celery.

	
on_worker_loaded(app)

	Be invoked when a Celery app is ready.

	Parameters:	app (celery.Celery [http://docs.celeryproject.org/en/latest/reference/celery.html#celery.Celery]) – a ready celery app

	
worker_broker_url

	The url of the broker used by Celery. See also Celery’s and
Kombu’s docs about broker urls:

http://docs.celeryproject.org/en/latest/configuration.html#broker-url
http://kombu.readthedocs.org/en/latest/userguide/connections.html#connection-urls

	
worker_config

	(typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]])
The configuration maping for worker that will go to Celery.conf.

	
worker_result_backend

	The backend used by Celery to store task results. See also Celery’s
docs about result backends:

http://docs.celeryproject.org/en/latest/configuration.html#celery-result-backend

	
worker_schedule

	(typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str],
typing.Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], object [https://docs.python.org/3/library/functions.html#object]]])
The schedule table for Celery Beat, scheduler for periodic tasks.

There’s some preprocessing before reading configuration.
Since TOML doesn’t have custom types, you can’t represent
timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] or crontab [http://docs.celeryproject.org/en/latest/reference/celery.schedules.html#celery.schedules.crontab]
values from the configuration file. To workaround the problem,
it evaluates strings like 'f()' pattern if they are appeared
in a schedule field.

For example, if the following configuration is present:

[worker.celerybeat_schedule.add-every-30-seconds]
task = "tasks.add"
schedule = "timedelta(seconds=30)" # string to be evaluated
args = [16, 16]

it becomes translated to:

CELERYBEAT_SCHEDULE = {
 'add-every-30-seconds': {
 'task': 'tasks.add',
 'schedule': datetime.timedelta(seconds=30), # evaluated!
 'args': (16, 16),
 },
}

Note that although timedelta [https://docs.python.org/3/library/datetime.html#datetime.timedelta] and
crontab [http://docs.celeryproject.org/en/latest/reference/celery.schedules.html#celery.schedules.crontab] is already present in the context,
you need to import things if other types. It can also parse and
evaluate the patterns like 'module.path:func()'.

Also args fields are translated from array to tuple.

See also Celery’s docs about periodic tasks:

http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html

New in version 0.2.2.

settei.presets.flask — Preset for Flask apps

New in version 0.2.0.

settei.presets.logging — Preset for logging [https://docs.python.org/3/library/logging.html#module-logging] configuration

New in version 0.2.0.

Preset for apps holding logging [https://docs.python.org/3/library/logging.html#module-logging] configuration. Logging can be
configured through TOML file e.g.:

[logging]
version = 1

[logging.loggers.flask]
handlers = ["stderr"]

[logging.loggers."urllib.request"]
handlers = ["stderr"]

[logging.loggers.werkzeug]
handlers = ["stderr"]

[logging.handlers.stderr]
class = "logging.StreamHandler"
level = "INFO"
stream = "ext://sys.stderr"

	
class settei.presets.logging.LoggingConfiguration(config: typing.Mapping[str, object] = {}, **kwargs)

	Hold configuration for logging [https://docs.python.org/3/library/logging.html#module-logging].

	
configure_logging() → None

	Configure logging [https://docs.python.org/3/library/logging.html#module-logging].

settei.version — Version data

New in version 0.2.0.

	
settei.version.VERSION = '0.4.0'

	(str [https://docs.python.org/3/library/stdtypes.html#str]) The version string e.g. '1.2.3'.

	
settei.version.VERSION_INFO = (0, 4, 0)

	(typing.Tuple[int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]])
The triple of version numbers e.g. (1, 2, 3).

Changlog

Verison 0.4.0

Released on May 14, 2017.

	config_object_property was added. It’s a kind of
dependency injection, but very limited version.

	ConfigError, ConfigKeyError,
ConfigTypeError, and ConfigValueError.

Prior to 0.4.0, Configuration had raised Python’s
built-in KeyError [https://docs.python.org/3/library/exceptions.html#KeyError] on missing keys, but since 0.4.0 it became to raise
ConfigKeyError, a subtype of KeyError [https://docs.python.org/3/library/exceptions.html#KeyError], instead.

In the same manner, while prior to 0.4.0, it had raised Python’s
built-in TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] when a configured value is not of a type it expects,
but since 0.4.0 it became to raise ConfigTypeError
instead. ConfigTypeError is also a subtype of
TypeError [https://docs.python.org/3/library/exceptions.html#TypeError].

Version 0.3.0

Released on January 22, 2017.

	As tsukkomi [https://github.com/spoqa/tsukkomi] is now abandoned, it’s replaced by typeguard [https://github.com/agronholm/typeguard].

Version 0.2.2

Released on November 18, 2016. Note that the version 0.2.1 has never been
released due to our mistake on versioning.

	WorkerConfiguration became to have
worker_schedule
config property to configure Celery beat — Celery’s periodic tasks.

Version 0.2.0

Released on July 13, 2016.

	settei became a package (had been a module), which contains
settei.base module.

	settei.Configuration, settei.ConfigWarning, and
settei.config_property were moved to settei.base module.
Although aliases for these previous import paths will be there for a while,
we recommend to import them from settei.base mdoule since they are
deprecated.

	Presets were introduced: settei.presets.
	settei.presets.celery is for configuring Celery [http://www.celeryproject.org/] apps.

	settei.presets.flask is for configuring Flask [http://flask.pocoo.org/] web apps.

	settei.presets.logging is for configuring Python standard
logging [https://docs.python.org/3/library/logging.html#module-logging] system.

	settei.version module was added.

	typeannotations [https://github.com/ceronman/typeannotations] was replaced by tsukkomi [https://github.com/spoqa/tsukkomi].

	Settei now requires pytoml [https://github.com/avakar/pytoml] 0.1.10 or higher. (It had required 0.1.7 or
higher.)

Version 0.1.1

Released on April 15, 2016.

	settei.base.config_property became to support typing.Union [https://docs.python.org/3/library/typing.html#typing.Union]
type.

Version 0.1.0

Released on April 1, 2016. Initial release.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 settei	

 	
 	
 settei.base	

 	
 	
 settei.presets	

 	
 	
 settei.presets.celery	

 	
 	
 settei.presets.flask	

 	
 	
 settei.presets.logging	

 	
 	
 settei.version	

Index

 C
 | D
 | F
 | G
 | L
 | O
 | S
 | V
 | W

C

 	
 	config_object_property (class in settei.base)

 	config_property (class in settei.base)

 	ConfigError

 	ConfigKeyError

 	
 	ConfigTypeError

 	Configuration (class in settei.base)

 	configure_logging() (settei.presets.logging.LoggingConfiguration method)

 	ConfigValueError

 	ConfigWarning

D

 	
 	docstring (settei.base.config_property attribute)

F

 	
 	from_file() (settei.base.Configuration class method)

 	
 	from_path() (settei.base.Configuration class method)

G

 	
 	get_union_types() (in module settei.base)

L

 	
 	LoggingConfiguration (class in settei.presets.logging)

O

 	
 	on_worker_loaded() (settei.presets.celery.WorkerConfiguration method)

S

 	
 	settei (module)

 	settei.base (module)

 	settei.presets (module)

 	
 	settei.presets.celery (module)

 	settei.presets.flask (module)

 	settei.presets.logging (module)

 	settei.version (module)

V

 	
 	VERSION (in module settei.version)

 	
 	VERSION_INFO (in module settei.version)

W

 	
 	worker_broker_url (settei.presets.celery.WorkerConfiguration attribute)

 	worker_config (settei.presets.celery.WorkerConfiguration attribute)

 	
 	worker_result_backend (settei.presets.celery.WorkerConfiguration attribute)

 	worker_schedule (settei.presets.celery.WorkerConfiguration attribute)

 	WorkerConfiguration (class in settei.presets.celery)

 _static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Settei

 		settei — App object holding configuration

 		settei.base — Basic app object

 		settei.presets — Richer presets for several frameworks

 		settei.presets.celery — Preset for Celery

 		settei.presets.flask — Preset for Flask apps

 		settei.presets.logging — Preset for logging configuration

 		settei.version — Version data

 		Changlog

 		Verison 0.4.0

 		Version 0.3.0

 		Version 0.2.2

 		Version 0.2.0

 		Version 0.1.1

 		Version 0.1.0

